Capturing Bisimulation-Invariant Complexity Classes with Higher-Order Modal Fixpoint Logic
نویسندگان
چکیده
Polyadic Higher-Order Fixpoint Logic (PHFL) is a modal fixpoint logic obtained as the merger of Higher-Order Fixpoint Logic (HFL) and the Polyadic μ-Calculus. Polyadicity enables formulas to make assertions about tuples of states rather than states only. Like HFL, PHFL has the ability to formalise properties using higher-order functions. We consider PHFL in the setting of descriptive complexity theory: its fragment using no functions of higher-order is exactly the Polyadic μ-Calculus, and it is known from Otto’s Theorem that it captures the bisimulation-invariant fragment of PTIME. We extend this and give capturing results for the bisimulation-invariant fragments of EXPTIME, PSPACE, and NLOGSPACE.
منابع مشابه
The Arity Hierarchy in the Polyadic $\mu$-Calculus
The polyadic μ-calculus is a modal fixpoint logic whose formulas define relations of nodes rather than just sets in labelled transition systems. It can express exactly the polynomial-time computable and bisimulation-invariant queries on finite graphs. In this paper we show a hierarchy result with respect to expressive power inside the polyadic μ-calculus: for every level of fixpoint alternation...
متن کاملBisimulation-invariant PTIME and higher-dimensional µ-calculus
Consider the class of all those properties of worlds in nite Kripke structures (or of states in inite transition systems), that are recognizable in polynomial time, and closed under bisimulation equivalence. It is shown that the class of these bisimulation-invariant Ptime queries has a natural logical characterization. It is captured by the straightforward extension of propositional-calculus to...
متن کاملRelating Levels of the Mu-Calculus Hierarchy and Levels of the Monadic Hierarchy
As already known [14], the mu-calculus [17] is as expressive as the bisimulation invariant fragment of monadic second order Logic (MSO). In this paper, we relate the expressiveness of levels of the fixpoint alternation depth hierarchy of the mu-calculus (the mu-calculus hierarchy) with the expressiveness of the bisimulation invariant fragment of levels of the monadic quantifiers alternation-dep...
متن کاملInquisitive bisimulation
Inquisitive modal logic InqML is a generalisation of standard Kripke-style modal logic. In its epistemic incarnation, it extends standard epistemic logic to capture not just the information that agents have, but also the questions that they are interested in. Technically, InqML fits within the family of logics based on team semantics. From a model-theoretic perspective, it takes us a step in th...
متن کاملA Van Benthem Theorem for Modal Team Semantics
The famous van Benthem theorem states that modal logic corresponds exactly to the fragment of first-order logic that is invariant under bisimulation. In this article we prove an exact analogue of this theorem in the framework of modal dependence logic MDL and team semantics. We show that modal team logic MTL, extending MDL by classical negation, captures exactly the FO-definable bisimulation in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014